

Malvern, PA 19355 Ph: 610-407-4700

Description

Features

32A Continuous Rating

Peak Off-State Voltage

Peak Reverse Voltage

Rate of Change of Current

Peak Gate-Cathode Voltage

.

•

This voltage controlled Solidtron[™] (VCS) discharge switch utilizes an n-type MOS-Controlled Thyristor mounted in a five leaded TO-247 plastic package.

The VCS features the high peak current capability and low Onstate voltage drop common to SCR thyristors combined with extremely high dl/dt capability. This semiconductor is intended for the control of high power circuits with the use of very small amounts of input energy and is ideally suited for capacitor discharge applications.

The industry standard TO-247 package allows for integration of the Solidtron using automated insertion equipment.

SMCTAA32N14A10

Advanced Pulse Power Device

N-MOS VCS, TO-247 Data Sheet (Rev 0 - 12/19/07)

5,521,436	5,446,316	5,105,536	5,209,390	4,958,211	5,206,186	4,857,983	5,082,795	4,644,637
5,585,310	5,557,656	5,777,346	5,139,972	5,111,268	5,757,036	4,888,627	4,980,741	4,374,389
5,248,901	5,564,226	5,446,316	5,103,290	5,260,590	5,777,346	4,912,541	4,941,026	4,750,666
5,366,932	5,517,058	5,577,656	5,028,987	5,350,935	5,995,349	5,424,563	4,927,772	4,429,011
5,497,013	4,814,283	5,473,193	5,304,847	5,640,300	4,801,985	5,399,892	4,739,387	5,293,070
5,532,635	5,135,890	5,166,773	5,569,957	5,184,206	4,476,671	5,468,668	4,648,174	

SILICON 275 Great Valley Parkway Malvern, PA 19355 Ph: 610-407-4700

SMCTAA32N14A10

Advanced Pulse Power Device

N-MOS VCS, TO-247 Data Sheet (Rev 0 - 12/19/07)

Performance Characteristics T _J =25°C unless otherwise specified						Measurements			
Parameters	Symbol	Test Conditions		Min.	Тур.	Max.	Units		
Anode to Cathode Breakdown Voltage	V _(BR)	V _{GK} =-5, I _A =1mA		1400			V		
Anode-Cathode Off-State Current	i _D	V_{GE} =-5V, V_{AK} =1200V	T _C =25°C		<10	100	uA		
			T _C =150°C		250	1000	uA		
Gate-Cathode Turn-On Threshold Voltage	V _{GK(TH)}	V _{AK} =V _{GK} , I _{AK} =1mA			0.7		V		
Gate-Cathode Leakage Current	I _{GK(lkg)}	V _{GK} =+/-20V				500	nA		
Anode-Cathode On-State Voltage	V _T	I _T =32A, V _{GK} =+5V	T _C =25°C		1.5	2.0	V		
		(See Figures 1,2 & 3)	T _C =150°C		1.3	1.5	V		
Input Capacitance	CISS				6		nF		
Turn-on Delay Time	t _{D(ON)}	0.2uF Capacitor Discharge			50	100	nS		
Rate of Change of Current	dl/dt	$T_J=25^{\circ}C$, $V_{GK}=-5V$ to $+5V$			75		kA/uSec		
Peak Anode Current	I _P	V _{AK} =800V, RG=4.7Ω			3500		А		
Discharge Event Energy	E _{DIS}	L _S = 7nH (See Figures 4,5 & 6)			32		mJ		
Turn-on Delay Time	t _{D(ON)}	0.2uF Capacitor Discharge			50	100	nS		
Rate of Change of Current	dl/dt	T_{J} =150°C, V_{GK} = -5V to +5V			110		kA/uSec		
Peak Anode Current	I _P	V _{AK} =1200V, RG=4.7Ω		4000			A		
Discharge Event Energy	E _{DIS}	L _S = 7nH (See Figures 4,5 & 6)			70		mJ		
Junction to Case Thermal Resistance	$R_{\theta JC}$	Anode (bottom) side cooled (Note 1.)			0.08		°C/W		

Typical Performance Curves (unless otherwise specified)

Advanced Pulse Power Device

N-MOS VCS, TO-247 Data Sheet (Rev 0 - 12/19/07)

Typical Performance Curves (Continued)

Figure 4. Turn-On Delay Characteristics $R_{G}{=}4.7\Omega - 500\Omega, \ T_{J}{=}25^{\circ}C$

Figure 6. 0.2uF Discharge Pulse Performance Characteristics (See Figure 9.)

Advanced Pulse Power Device

N-MOS VCS, TO-247 Data Sheet (Rev 0 - 12/19/07)

Test Circuit and Waveforms

[•] $L_{\text{SERIES(TOTAL)}}$ is caculated using 1 / (f 2π)²C where f = frequency of I_A (See Figure 10)

Figure 9. 0.2uF Pulsed Discharge Circuit Schematic

• The waveform shown is representative of one produced using a very low inductance circuit (<10nH).

• V_{GK} is held positive until I_A oscillations have ended ($I_A=0$).

Figure 10. 0.2uF Pulsed Discharge Circuit Waveforms

[•] R_{SENSE} is a calibrated Current Viewing Resistor (CVR)

Advanced Pulse Power Device

N-MOS VCS, TO-247 Data Sheet (Rev 0 - 12/19/07)

Application Notes

A1. Use of Gate Return

The VCS was designed for high di/dt applications. An independent cathode connection for use as "gate return" is provided on pin 2 to minimize the effects of rapidly changing Anode-Cathode current on the Gate control voltage, (V=L*di/dt). It is therefore, critcal that the user utilize the Gate Return as the point at which the gate driver reference (return) is attached to the VCS device.

Packaging and Handling

Pin 1 : Gate Pin 2 : Gate return Pin 3 : Anode Pin 4 : Cathode Pin 5 : Cathode

As with all MOS gated devices, proper handling procedures must be observed to prevent electrostatic discharge which may result in permanant damage to the gate of the device

CAO 05/28/09

Advanced Pulse Power Device

N-MOS VCS, TO-247 Data Sheet (Rev 0 - 12/19/07)

Revision History						
Rev	Date	EA #	Nature of Change			

Time 25 °C to Peak Temperature

-			
0	12-19-2007	04242009-NB-0010	Initial Issue

6 minutes max.